Retrieval of Remote Sensing Images Using Colour and Texture Attribute

نویسندگان

  • Priti Maheswary
  • Namita Srivastava
چکیده

Grouping images into semantically meaningful categories using low-level visual feature is a challenging and important problem in content-based image retrieval. The groupings can be used to build effective indices for an image database. Digital image analysis techniques are being used widely in remote sensing assuming that each terrain surface category is characterized with spectral signature observed by remote sensors. Even with the remote sensing images of IRS data, integration of spatial information is expected to assist and to improve the image analysis of remote sensing data. In this paper we present a satellite image retrieval based on a mixture of old fashioned ideas and state of the art learning tools. We have developed a methodology to classify remote sensing images using HSV color features and Haar wavelet texture features and then grouping them on the basis of particular threshold value. The experimental results indicate that the use of color and texture feature extraction is very useful for image retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

Retrieval of Remote Sensing Images Using Color, Texture and Spectral Features

Abstract: The remote sensing images are increasing day by day therefore storage and retrieval of these images is of significant importance. In this paper a prototype model for retrieval of remote sensing images on the basis of color moment and gray level co-occurrence matrix feature is developed and different vegetation index feature is extractor as color, texture and spectral. These three feat...

متن کامل

Remote Sensing Image Retrieval Algorithm based on MapReduce and Characteristic Information

In order to improve the retrieval efficiency and accuracy of remote sensing image, and this paper proposed a remote sensing image retrieval algorithm based on MapReduce. Firstly, the image color and texture features of emote sensing are extracted, and then the Map function is used to compute similarity among the retrieval remote sensing images and the feature library he according to color, colo...

متن کامل

Improved color texture descriptors for remote sensing image retrieval

Texture features are widely used in image retrieval literature. However, conventional texture features are extracted from grayscale images without taking color information into consideration. We present two improved texture descriptors, named color Gabor wavelet texture (CGWT) and color Gabor opponent texture (CGOT), respectively, for the purpose of remote sensing image retrieval. The former co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0908.4074  شماره 

صفحات  -

تاریخ انتشار 2009